- PM Modi visit USAOnly the mirror in my washroom and phone gallery see the crazy me : Sara KhanKarnataka rain fury: Photos of flooded streets, uprooted treesCannes 2022: Deepika Padukone stuns at the French Riviera in Sabyasachi outfitRanbir Kapoor And Alia Bhatt's Wedding Pics - Sealed With A KissOscars 2022: Every Academy Award WinnerShane Warne (1969-2022): Australian cricket legend's life in picturesPhotos: What Russia's invasion of Ukraine looks like on the groundLata Mangeshkar (1929-2022): A pictorial tribute to the 'Nightingale of India'PM Modi unveils 216-feet tall Statue of Equality in Hyderabad (PHOTOS)
India Open Competition in Shotgun, organised by the National Rifle Association of India (N
- Hockey India names Amir Ali-led 20-man team for Junior Asia Cup
- Harmanpreet Singh named FIH Player of the Year, PR Sreejesh gets best goalkeeper award
- World Boxing medallist Gaurav Bidhuri to flag off 'Delhi Against Drugs' movement on Nov 17
- U23 World Wrestling Championship: Chirag Chikkara wins gold as India end campaign with nine medals
- FIFA president Infantino confirms at least 9 African teams for the 2026 World Cup
Flexible glass for tiny medical devices developed Last Updated : 25 Mar 2017 02:37:29 PM IST File Photo: Brittle material of glass
Researchers have found a way to make the normally brittle material of glass bend and flex, adding a new level of flexibility to the microscopic world of medical devices.
The research opens up the ability to create a new family of lab-on-a-chip devices based on flexing glass.
"If you keep the movements to the nanoscale, glass can still snap back into shape," said lead researcher Aaron Hawkins, Professor at Brigham Young University in Provo, Utah, US.
"We've created glass membranes that can move up and down and bend," Hawkins added.
Glass has some great perks. It is stiff and solid and not a material upon which things react, it's easy to clean, and it is not toxic, according to lead study author John Stout from Brigham Young University.
"Glass is clean for sensitive types of samples, like blood samples," Stout said.
"Working with this glass device will allow us to look at particles of any size and at any given range. It will also allow us to analyse the particles in the sample without modifying them," Stout added.
While current lab-on-a-chip membrane devices effectively function on the microscale, the new research, published in the journal Applied Physics Letters, will allow equally effective work at the nanoscale.
Chemists and biologists could use the nanoscale devices to move, trap and analyse very small biological particles like proteins, viruses and DNA.
The researchers believe their device could also mean performing successful tests using much smaller quantities of a substance.
Instead of needing several ounces to run a blood test, the glass membrane device created by the researchers would only require a drop or two of blood.IANS For Latest Updates Please-
Join us on
Follow us on
172.31.16.186